
ЕГЭ по химии. Методология решения задач второй части ЕГЭ

Стаханова Светлана Владленовна РХТУ им. Д.И.Менделеева

В настоящее время содержание КИМ ЕГЭ <u>базируется на</u> <u>требованиях</u> Федерального компонента государственного образовательного стандарта среднего (полного) и основного общего образования (приказ Минобразования РФ от 05.03.2004 г.)

www.fipi.ru

Теоретические основы химии (1630)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] [81] [82] [83] [84] [85] [86] [87] [88] [89] [90] [91] [92] [93] [94] [95] [96] [97] [98] [99] [100] [101] [102] [103] [104] [105] [106] [107] [108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118] [119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131] [132] [133] [134] [135] [136] [157] [158] [159] [160] [161] [162] [163]

Для выполнения заданий 30, 31 используйте следующий перечень веществ:

фтороводород, карбонат аммония, сульфат железа(II), дихромат калия, серная кислота. Допустимо использование водных растворов веществ.

Из предложенного перечня веществ выберите вещества, между которыми возможна окислительно-восстановительная реакция. Запишите уравнение только одной из возможных окислительно-восстановительных реакций. Составьте электронный баланс, укажите окислитель и восстановитель.

Из предложенного перечня веществ выберите вещества, между которыми возможна реакция ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения только одной из возможных реакций.

www.fipi.ru

Новая версия открытого банка!

подьор задании	Кол-во задании:
Разделы заданий	
Теоретические основы химии	
Пеорганическая химия	
Органическая химия	
Методы познания химии. Химия и жизнь	
Темы заданий (КЭС)	
Выбор ▼	
Уровень сложности	
Базовый Повышенный Высокий	
Тип ответа	
Единичный выбор □ Краткий ответ □ Множественный выбор □ Последовательность □ Развернутый ответ	
Расстановка терминов Установить соответствие	
Номер задания Номер группы	
Искать задания	
 Все Нерешенные Решенные 	
 Все Только в "Избранном" Все, кроме включенных в "Избранное" 	
найти	СБРОСИТЬ ФИЛЬТ

www.fipi.ru

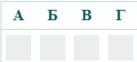
Федеральный институт педагогических измерений ОТКРЫТЫЙ БАНК ТЕСТОВЫХ ЗАДАНИЙ

ЕГЭ | Химия

ПОДБОР ЗАДАНИЙ

Кол-во заданий: 59

1 2 3 4 5 6 7 8 9 10 11 12


показывать на странице по:

Установление соответствия

Установите соответствие между формулой вещества и реагентами, с каждым из которых это вещество может взаимодействовать.

ФОРМУЛА ВЕЩЕСТВА	РЕАГЕНТЫ
A) P ₂ O ₅	1) Ca(OH) ₂ , AgNO ₃ , Cl ₂
Б) Fe(OH) ₂	2) Fe, Na ₃ PO ₄ , KOH
B) NH ₄ Br	3) H ₂ O ₂ , H ₂ SO ₄ , HCl
Γ) Cu(NO ₃) ₂	4) H ₂ O, CaO, LiOH
	5) CO, H ₂ O, PbS

www.fipi.ru

• Информация о правилах оценивания и требованиях к оформлению заданий 2-ой части работы — в разделе «Для предметных комиссий субъектов РФ»

Методические материалы для председателей и членов РПК по проверке выполнения заданий с развернутым ответом ЕГЭ 2019

ФИЗИКА (10.6 Mb)

ИНФОРМАТИКА и ИКТ (527.5 Kb)

ХИМИЯ (420 Кb)

Нормативно-правовые документы

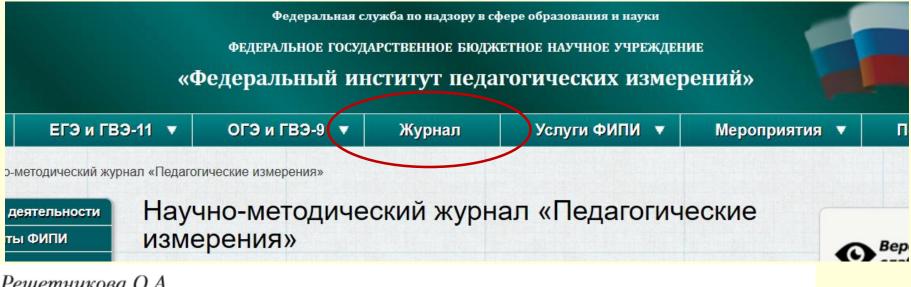
Демоверсии, спецификации, кодификаторы

Для предметных комиссий субъектов РФ

Аналитические и методические материалы

Для выпускников

Аналитические и методические материалы


Методические рекомендации для учителей, подготовленные на основе анализа типичных ошибок участников ЕГЭ 2019 года

ФИЗИКА (897 Kb)

XИМИЯ (771.7 Kb)

ГЕОГРАФИЯ (795.3 Kb)

www.fipi.ru

Решетникова О.А.

Подходы к оценке метапредметных результатов и креативности в контрольных измерительных материалах государственной итоговой аттестации.....

В статье анализируются возможности оценки метапредметных результатов в рамках предметных контрольных измерительных материалов. Описываются подходы к оценке умений по работе с информацией и познавательных действий, используемые в КИМ ОГЭ и ЕГЭ по группам предметов естественнонаучного и социально-гуманитарного циклов.

Добротин Д.Ю.

Роль заданий с развёрнутым ответом в экзаменационной модели ЕГЭ по химии.......43

В статье анализируется роль заданий с развёрнутым ответом в контрольных измерительных материалах ЕГЭ по химии, рассматриваются особенности формулировок заданий, подходы к разработке критериев оценивания, рассматриваются сложные случаи оценивания выполнения заданий с развёрнутым ответом, раскрывается важная роль химического эксперимента в процессе подготовки к единому государственному экзамену.

Задания 30 и 31. Реакции окислительно-восстановительные. Электролитическая диссоциация электролитов в водных растворах. Сильные и слабые электролиты. Реакции ионного обмена.

Для выполнения заданий 30, 31 используйте следующий перечень веществ: перманганат калия, гидрокарбонат натрия, сульфит натрия, сульфат бария, гидроксид калия, пероксид водорода. Допустимо использование водных растворов веществ.

- Из предложенного перечня веществ выберите вещества, между которыми окислительно-восстановительная реакция протекает с изменением цвета раствора. Выделение осадка или газа в ходе этой реакции не наблюдается. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций с участием выбранных веществ. Составьте электронный баланс, укажите окислитель и восстановитель.
- Из предложенного перечня веществ выберите кислую соль и вещество, которое вступает с этой кислой солью в реакцию ионного обмена. Запишите молекулярное, полное и сокращённое ионное уравнения реакции с участием выбранных веществ.

Подготовка к выполнению задания 30: свойства окислителей и восстановителей

Важнейшие окислители:

 CI_2 , Br_2 , HNO_3 , H_2SO_4 (конц.), $KMnO_{\underline{4}}$, MnO_2 , $K_2Cr_2O_{\underline{7}}$, $K_2CrO_{\underline{4}}$, KCIO, $KCIO_{\underline{3}}$ $H_2O_{\underline{2}}$, $(O_2$, SO_2 , соединения Fe(III))

Важнейшие восстановители:

металлы, неметаллы: S, P, C;

сульфиды, иодиды, бромиды, а также H_2S , HI, HB_r , HCI, NH_3 , PH_3 ;

нитриты, сульфиты, SO_2 , соединения Fe(II), Cr(III)

 $(H_2, C, CO, соединения Cr(II), Cu(I)(H_2O_2))$

Анализ возможных окислительно-восстановительных процессов:

окислители:	восстановители:	среда:
KMnO ₄	Na ₂ SO ₃	KOH
H_2O_2	H_2O_2	H_2O

Схемы возможных реакций:

1)
$$KMnO_4 + Na_2SO_3 + KOH \rightarrow K_2MnO_4 + Na_2SO_4 + H_2O$$

2)
$$KMnO_4 + Na_2SO_3 + H_2O \rightarrow MnO_2 + Na_2SO_4 + KOH$$

3)
$$KMnO_4 + H_2O_2 \rightarrow MnO_2 + O_2 + KOH + H_2O$$

4)
$$H_2O_2 + Na_2SO_3 \rightarrow Na_2SO_4 + H_2O$$

Условию задания – изменение цвета раствора, осадок или газ не выделялся - соответствует только <u>уравнение реакции 1</u>.

Анализировать все возможные OB процессы при выполнении задания 30 не требуется!

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа:	
$Na_2SO_3 + 2KMnO_4 + 2KOH = Na_2SO_4 + 2K_2MnO_4 + H_2O$	
$2 \mathbf{Mn}^{+7} + \mathbf{\bar{e}} \rightarrow \mathbf{Mn}^{+6}$	
$1 \mid S^{+4} - 2\bar{e} \rightarrow S^{+6}$	
Сульфит натрия (или сера в степени окисления +4) является	
восстановителем.	
Перманганат калия (или марганец в степени окисления +7) -	
окислителем	
Ответ правильный и полный, содержит следующие элементы:	2
• выбраны вещества, и записано уравнение окислительно-	
восстановительной реакции;	
• составлен электронный баланс, указаны окислитель и	
восстановитель	
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

Содержание верного ответа и указания по оцениванию	Баллы
(допускаются иные формулировки ответа, не искажающие его смысла)	
Вариант ответа:	
$2NaHCO_3 + 2KOH = Na_2CO_3 + K_2CO_3 + 2H_2O$	
$2Na^{+} + 2HCO_{3}^{-} + 2K^{+} + 2OH^{-} = 2Na^{+} + 2K^{+} + 2CO_{3}^{2-} + 2H_{2}O$	
$HCO_3^- + OH^- = CO_3^{2-} + H_2O$	
Ответ правильный и полный, содержит следующие элементы:	2
• выбраны вещества, и записано молекулярное уравнение	
реакции ионного обмена;	
• записаны полное и сокращённое ионное уравнения реакций	
Правильно записан один элемент ответа	1
Все элементы ответа записаны неверно	0
Максимальный балл	2

Для выполнения заданий 30, 31 используйте следующий перечень веществ: дихромат калия, бром, нитрат бария, оксид серы(IV), хлороводород, карбонат аммония. Допустимо использование водных растворов веществ.

Из предложенного перечня веществ выберите вещества, окислительновосстановительная реакция между котрыми протекает с образованием двух кислот. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций. Составьте электронный баланс, укажите окислитель и восстановитель.

Из предложенного перечня веществ выберите вещества, реакция ионного обмена между которыми протекает с выделением газа. Запишите молекулярное, полное и сокращённое ионное уравнения только одной из возможных реакций.

Для выполнения заданий 30, 31 используйте следующий перечень веществ: дихромат калия, бром, нитрат бария, оксид серы(IV), хлороводород, карбонат аммония. Допустимо использование водных растворов веществ.

Задание 30, вариант ответа:

$$SO_2 + Br_2 + 2H_2O = H_2SO_4 + 2HBr$$

$$\begin{array}{c|c}
1 & Br_2^0 + 2\bar{e} \to 2Br^{-1} \\
1 & S^{+4} - 2\bar{e} \to S^{+6}
\end{array}$$

Бром является окислителем.

Сера в степени окисления +4 (или оксид серы(IV)) является восстановителем.

Задание 31, вариант ответа:

$$2(NH_4)_2CO_3 + 2HCl = 2NH_4Cl + H_2O + CO_2$$

 $2NH_4^+ + CO_3^{2-} + 2H^+ + 2Cl^- = 2NH_4^+ + 2Cl^- + H_2O + CO_2$
 $CO_3^{2-} + 2H^+ = H_2O + CO_2$

Для выполнения заданий 30, 31 используйте следующий перечень веществ: сероводород, фосфин, азотная кислота, оксид серы(IV), ацетат кальция, карбонат аммония. Допустимо использование водных растворов веществ.

Из предложенного перечня веществ выберите вещества, в ходе окислительно-восстановительной реакции между которыми каждая молекула восстановителя отдает два электрона, а выделения газа не происходит. В ответе запишите уравнение только одной из возможных окислительно-восстановительных реакций. Составьте электронный баланс, укажите окислитель и восстановитель.

Из предложенного перечня веществ выберите вещества, реакция ионного обмена между которыми не сопровождается образованием осадка или газа. Запишите молекулярное, полное и сокращённое ионное уравнения только одной из возможных реакций.

Для · выполнения · заданий · 30 , · 31 · используйте · следующий · перечень · веществ : сероводород , · фосфин , · азотная · кислота , · оксид · серы(IV) , · ацетат · кальция , карбонат · аммония . · Допустимо · использование · водных · растворов · веществ . ¤

Задание 30, вариант ответа:

$$2H_2S + SO_2 = 3S + 2H_2O$$

$$2 \mid S^{-2} - 2\bar{e} \rightarrow S^0$$

$$1 \mid S^{+4} + 4\bar{e} \rightarrow S^0$$

Сера в степени окисления +4 (или оксид серы(IV)) является окислителем.

Сера в степени окисления -2 (или сероводород) является восстановителем.

Задание 31, вариант ответа:

Оформление ответа к заданию 30

Запись электронного баланса

$$K_2Cr_2O_7 + KBr + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + Br_2 + \dots$$

Допустимы записи:

Количество принятых и отданных электронов может быть указано над стрелкой.

$$2Cr^{+6} + 6\bar{e} \rightarrow 2Cr^{+3} \begin{vmatrix} 1\\3 \end{vmatrix}$$

$$2Br^{-1} - 2\bar{e} \rightarrow Br_{2} \begin{vmatrix} 1\\3 \end{vmatrix}$$

$$U\Pi U$$

$$Cr^{+6} + 3\bar{e} \rightarrow Cr^{+3} \begin{vmatrix} 1\\3 \end{vmatrix}$$

$$Br^{-} - \bar{e} \rightarrow Br^{0} \begin{vmatrix} 1\\3 \end{vmatrix}$$

$$U\Pi U$$

$$2Cr^{+6} + 6\bar{e} \rightarrow 2Cr^{+3} \begin{vmatrix} 1\\3 \end{vmatrix}$$

$$2Br^{-} - 2\bar{e} \rightarrow 2Br \begin{vmatrix} 1\\3 \end{vmatrix}$$

Такие обозначения степеней окисления как N⁵⁺ и N⁴⁺ (сначала цифра, затем знак) считаются <u>неверными</u>.

<u>Недопустимы записи</u> <u>типа</u>:

$$Cr_{2}^{+6} + 6\bar{e} \rightarrow 2Cr^{+3}$$

Реакции в растворах электролитов идут практически до конца в том случае, если происходит связывание исходных ионов с образованием:

- слабого электролита,
- осадка малорастворимого вещества,
- газообразного продукта.

Ионные уравнения реакций отражают суть тех изменений, которые происходят при взаимодействии веществ – электролитов.

В ионном уравнении реакции хорошо растворимые сильные электролиты записывают в виде соответствующих ионов, а слабые электролиты, нерастворимые вещества и газы – в молекулярном виде.

В сокращённом ионном уравнении дробные или удвоенные коэффициенты <u>не допускаются</u>.

Слабый электролит	$\alpha, \%$ (C = 0,1M)
H_2SO_3	20
HF	8
HNO ₂	4
NH ₃ ·H ₂ O	1,4
CH ₃ COOH	1,4
H ₂ CO ₃	0,2
H ₂ S	0,07

• Если в качестве одного из исходных веществ выбрана **соль**,то она должна быть растворима в воде (исключение – взаимодействие нерастворимых карбонатов с кислотами).

• Кислые соли диссоциируют ступенчато:

NaHSO₃
$$\rightarrow$$
 Na⁺ + HSO₃⁻ (первая ступень);
HSO₃⁻ \leftrightarrows H⁺ + SO₃²⁻ (вторая ступень).

В ионном уравнении используется записи типа: Na+ + HSO₃-

Пример: взаимодействие азотной кислоты и гидрокарбоната аммония

$$HNO_3 + NH_4HCO_3 = H_2O + CO_2 + NH_4NO_3$$

 $H^+ + NO_3^- + NH_4^+ + HCO_3^- = H_2O + CO_2 + NH_4^+ + NO_3^-$
 $H^+ + HCO_3^- = H_2O + CO_2$

O кислоте H_3PO_4

$$K_{1}$$

$$H_{3}PO_{4} \rightleftharpoons H^{+} + H_{2}PO_{4}^{-}$$

$$H_{2}PO_{4}^{-} \rightleftharpoons H^{+} + HPO_{4}^{2-}$$

$$HPO_{4}^{2-} \rightleftharpoons H^{+} + PO_{4}^{3-}$$

$$K_1 = 7.5 \cdot 10^{-3}$$
 $\alpha = 27\% (0.1 \text{ M})$

$$K_2 = 6.2 \cdot 10^{-8}$$
 $\alpha < 0.1\%$

$$K_3 = 2.2 \cdot 10^{-13}$$
 $\alpha < 0.001\%$

В случае H_3PO_4 в ионном уравнении возможны записи как $H^+ + H_2PO_4^-$, так и H_3PO_4

Гидролиз фосфатов:

$$PO_4^{3-} + H_2O \leftrightarrows HPO_4^{2-} + OH^{-}$$

• *Реакции образования гидроксокомплексов* при взаимодействии растворов щелочей и растворимых солей цинка и алюминия также можно отнести к реакциям ионного обмена:

$$ZnSO_4 + 4NaOH = Na_2[Zn(OH)_4] + Na_2SO_4$$

 $Zn^{2+} + SO_4^{2-} + 4Na^+ + 4OH^- = 2Na^+ + [Zn(OH)_4]^{2-} + 2Na^+ + SO_4^{2-}$
 $Zn^{2+} + 4OH^- = [Zn(OH)_4]^{2-}$

• При взаимодействии *солей аммония* со щелочами допустимы записи NH₃·H₂O, NH₃ + H₂O, например: